首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
废物处理   4篇
环保管理   3篇
综合类   3篇
基础理论   15篇
污染及防治   15篇
评价与监测   2篇
社会与环境   2篇
  2023年   1篇
  2022年   6篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1978年   1篇
排序方式: 共有44条查询结果,搜索用时 468 毫秒
21.
The level of arsenic (As) contamination and the geochemical composition of groundwater in Shuklaganj area located on the banks of the Ganges Delta of Kanpur-Unnao district were elucidated. Samples (n?=?59) were collected from both India Mark II hand pumps (depth, 30-33 m) and domestic hand pump tube wells (10-12 m) located within 5 km from the banks of Ganges. Samples were analyzed for various parameters, including total inorganic As, sulfate, nitrate, alkalinity, ammonia, and iron. Hydrochemistry of the groundwater aquifer was studied through the trilinear plots between monovalent and divalent cations and anions. In Indian mark II hand pumps, arsenic concentration ranged from below detection limit to 448 μg/L. Most of the samples contained both As(III) and As(V). The pH of the samples ranged from 7.1 to 8.2. Except for a few, most of the samples were reducing in nature as evident by their negative oxidation reduction potentials. A positive correlation for arsenic with iron, ammonia, and dissolved organic carbon shows the probability of biodegradation of organic matter and reductive dissolution of Fe oxyhydroxide processes to leach As in aquifers. For confirmation of the suggested arsenic mobilization mechanism, the presence and absence of sulfate-reducing bacteria and iron-reducing bacteria were also tested.  相似文献   
22.
In present study focus has been given on estimating quality and toxicity of waste with respect to heavy metals and its impact on groundwater quality, using statistical and empirical relationships between different hydrochemical data, so that easy monitoring may be possible which in turn help the sustainable management of landfill site and municipal solid waste. Samples of solid waste, leachate and groundwater were analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrochemical nature. Results suggest the existence of an empirical relationship between some specific indicator parameters like heavy metals of all three above mentioned sample type. Further, K/Mg ratio also indicates three groundwater samples heavily impacted from leachate contamination. A good number of samples are also showing higher values for and Pb than that of World Health Organization (WHO) drinking water regulation. Predominance of Fe and Zn in both groundwater and solid waste samples may be due to metal plating industries in the area. Factor analysis is used as a tool to explain observed relation between numerous variables in term of simpler relation, which may help to deduce the strength of relation. Positive loading of most of the factors for heavy metal clearly shows landfill impact on ground water quality especially along the hydraulic gradient. Cluster analysis, further substantiates the impact of landfill. Two major groups of samples obtained from cluster analysis suggest that one group comprises samples that are severely under the influence of landfill and contaminated leachates along the groundwater flow direction while other assorted with samples without having such influence.  相似文献   
23.
Bitumen is a black, thermoplastic, hydrocarbon material derived from the processing of crude oil. At ambient temperature, bitumen is solid and does not present any health/environmental risks. This is one of the main reasons that bitumen is widely used for road construction all over the world. But during manufacturing/modification according to its application, storage, transportation, and use of bitumen is heated giving off various hydrocarbons emissions. In recent years, there has been increasing interest in investigating the potential of bitumen emissions to cause health effects. This is mainly because of the reason that bitumen has small amount of poly-aromatic hydrocarbons, along with some other volatiles like benzene, toluene, etc., which are known to be carcinogenic in nature. Thus, assessment of the emission characteristics and health hazards of bitumen fumes may have far reaching industrial economic and public health implications. In this review, we will discuss about the emission characteristics from bitumen, asphalts, or road construction, which is mainly contributed by bitumen fumes. Sampling strategies and analytical methods employed are also described briefly.  相似文献   
24.
Seasonal changes in abundance of nitrifiers (ammonia-oxidizing and nitrite-oxidizing bacteria) in surface and bottom water of freshwater ponds were examined with respect to temperature, DO, pH as well as concentration of ammonia and nitrite. The most probable number (MPN) of ammonia-oxidizers in different ponds varied from 1297 +/- 3.6 to 1673.23 +/- 0.36 ml(-1) in bottom and 720.5 +/- 8.1 to 955.3 +/- 10.8 ml(-1) in surface water during the rainy season while the MPN ranged from 1074 +/- 1.07 to 1372.17 +/- 4.6 ml(-1) in bottom and 515 +/- 10.1 to 678 +/- 11.8 ml(-1) in surface water in winter. However, the MPN were greatly reduced in summer and ranged from 435.05 +/- 15.7 to 547.54 +/- 2.12 ml(-1) in bottom and 218.7 +/- 7.3 to 368.4 +/- 9.32 ml(-1) in surface water. Similar seasonal trends were also observed in MPN of nitrite-oxidizers. Among all the physico-chemical parameters, abundance of nitrifiers was more positively correlated with ammonia and nitrite concentration in all the seasons. The abundance of nitrifiers in surface and bottom water was highest in rainy season followed by winter and modest in summer. The potential nitrification activities and oxidation rates were shown to be linear and activity of ammonia-oxidizing and nitrite-oxidizing bacteria was highest during rainy season.  相似文献   
25.
26.
Increasing amount of wastes is posing great difficulties for all countries across the world. The problem of waste management is more severe in developing countries such as India where the rates of economic growth and urbanization are increasing at a fast pace. The governments in these countries are often constrained by limited technical and financial capabilities, which prevent them from effectively addressing these problems. There is a limited participation from the private players too in terms of setting up of waste recycling units. The present study aims at identifying various barriers that challenge the establishment of these units, specific to India. Further, it attempts to identify the most influential barriers by utilizing multicriterion decision-making tools of interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL). The findings of the study suggest that the lack of funds, input material, and subsidy are the most influential barriers that are needed to be addressed for the development of waste recycling infrastructure in India.

Implications: This work has been carried out to address the problem of proper waste management in India. To deal with this problem, the method of waste recycling has been felt appropriate by the government of various countries, including India. Therefore, the barriers that play vital role in waste recycling for private players have been identified and their importance has been established with the help of ISM and DEMATEL methods. Doing so will assist the government to take appropriate steps for the betterment of waste recycling infrastructure in India and enhance waste management.  相似文献   

27.
28.

Purpose

Removal of malathion from agricultural runoff was studied using novel copper-coated chitosan nanocomposite (CuCH)??a biopolymeric waste obtained from marine industry.

Methods

Synthesis and characterization of the adsorbent using different spectral techniques like Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer, Emmett, and Teller surface analyzer have been carried out. Equilibrium studies have been carried out to optimize the dose rate, pH, and the reaction time. Parathion and methyl parathion removal were also evaluated by CuCH in the batch mode. Using gas chromatography?Cmass spectrometry (GC?CMS) and FTIR studies suitable mechanism for adsorption has been suggested.

Results

The particle size of the adsorbent ranged from 700 to 750?nm. The surface area was found to be 20?m2?g-1 with a pore volume of 0.11?cc?g-1. The maximum adsorption capacity of malathion by CuCH was found to be 322.6?±?3.5?mg?g-1 at an optimum pH of 2.0. Presence of copper ions enhanced the adsorption capacity of the adsorbent. The reaction was found to follow pseudo second-order kinetics with a rate constant of 0.53?g?mg-1?min-1. Evidence from FTIR indicated that copper ions form a dithionate complex with malathion during the adsorption stage. The adsorbent was found to remove malathion completely from spiked concentration of 2?mg?l-1 in the agricultural run-off samples. It was also found that CuCH removed other organophospurous pesticides like methyl parathion and parathion under prevailing conditions.

Conclusions

The results indicated that CuCH could be applied for the removal of organophosphorous pesticides.  相似文献   
29.
Enhanced removal application of both forms of inorganic arsenic from arsenic-contaminated aquifers at near-neutral pH was studied using a novel electrospun chitosan/PVA/zerovalent iron (CPZ) nanofibrous mat. CPZ was carefully examined using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), atomic fluorescence spectroscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). Application of the adsorbent towards the removal of total inorganic arsenic in batch mode has also been studied. A suitable mechanism for the adsorption has also been discussed. CPZ nanofibers mat was found capable to remove 200.0?±?10.0 mg g?1 of As(V) and 142.9?±?7.2 mg g?1 of As(III) from aqueous solution of pH 7.0 at ambient condition. Addition of ethylenediaminetetraacetic acid (EDTA) enabled the stability of iron in zerovalent state (ZVI). Enhanced capacity of the fibrous mat could be attributed to the high surface area of the fibers, presence of ZVI, and presence of functional groups such as amino, carboxyl, and hydroxyl groups of the chitosan and EDTA. Both Langmuir and Freundlich adsorption isotherms were applicable to describe the removal process. The possible mechanism of adsorption has been explained in terms of electrostatic attraction between the protonated amino groups of chitosan/arsenate ions and oxidation of arsenite to arsenate by Fentons generated from ZVI and subsequent complexation of the arsenate with the oxidized iron. These CPZ nanofibrous mats has been prepared with environmentally benign naturally occurring biodegradable biopolymer chitosan, which offers unique advantage in the removal of arsenic from contaminated groundwater.  相似文献   
30.
Weed management is one of the prime concerns for sustainable crop production. Conyza bonariensis and Conyza canadensis are two of the most problematic, noxious, invasive and widespread weeds in modern-day agriculture. The biology, ecology and interference of C. bonariensis and C. canadensis have been reviewed here to highlight pragmatic management options. Both these species share a unique set of biological features, which enables them to invade and adapt a wide range of environmental conditions. Distinct reproductive biology and an efficient seed dispersal mechanism help these species to spread rapidly. Ability to interfere strongly and to host crop pests makes these two species worst weeds of cropping systems. These weed species cause 28–68 % yield loss in important field crops such as soybean and cotton every year. These weeds are more prevalent in no-till systems and, thus, becoming a major issue in conservation agriculture. Cultural practices such as crop rotations, seed rate manipulation, mulching, inter-row tillage and narrow row spacing may provide an effective control of these species. However, such methods are not feasible and applicable under all types of conditions. Different herbicides also provide a varying degree of control depending on crop, agronomic practices, herbicide dose, application time and season. However, both these species have evolved resistance against multiple herbicides, including glyphosate and paraquat. The use of alternative herbicides and integrated management strategies may provide better control of herbicide-resistant C. bonariensis and C. canadensis. Management plans based on the eco-biological interactions of these species may prove sustainable in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号